Karmaşık Sayıların Kutupsal Gösterimi


Sponsorlu Bağlantılar

Bu makalenin Karmaşık Sayıların Kutupsal Gösterimi ile iligli olan sorularınızı gidereceğini düşünüyorum.

Karmaşık Sayıların Kutupsal Gösterimi

Sponsorlu Bağlantılar

Bir z = a + ib sayısını Reel düzlemde (a,b) noktasını göstermektedir. Diğer taraftan bu noktayı (r,Φ) şeklinde de ifade edebiliriz. Şimdi karmaşık analizde (r,Φ) gösterimine denk fakat bundan daha yaygın olan, kutupsal gösterimi elde edelim:

Üstteki şekilden görüldüğü gibi a=rcosΦ , b=rsinΦ ve böylece de z=r(cosΦ+isinΦ) elde edilir. Bu ifadeye z=a+ib sayısının kutupsal (polar) gösterimi adı verilmektedir. Buna bazen trigonometrik gösterim de denir.

Burada dir. Çoğunlukla Φ=argz yazımı ile belirteceğimiz Φ sayısına z’nin argümenti (amplitit) denir. Hemen belirtelim ki bir karmaşık sayının kutupsal gösterimi bir tek değildir. Gerçekten yukarıdaki z sayısını belirtmek için Φ yerine Φ+2kπ (k – tam sayı) de alabiliriz.
Şekilden görüldüğü gibi;


olarak bulunur. Ancak bir çalışmada argüment (-π,π] aralığında düşünülürse, Φ bir tek olarak belirtilebilir. Bu özellikteki Φ sayısına z nin esas argümenti denir.

kaynak

Sponsorlu Bağlantılar

Tepkin Ne Oldu?

Çok Tatlı Çok Tatlı
0
Çok Tatlı
Sesli Güldüm Sesli Güldüm
0
Sesli Güldüm
Rezil Rezil
0
Rezil
Kızgın Kızgın
0
Kızgın
Yok Artık Yok Artık
0
Yok Artık
Başarılı Başarılı
0
Başarılı

Yorum 0

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Karmaşık Sayıların Kutupsal Gösterimi

Giriş Yap

Hesabınız yok mu?
Üye Ol

reset password

Geri
Giriş Yap

Üye Ol

Not delilerine katıl!

Geri
Giriş Yap
Tür Seç
Kişilik Testi
Kişilik hakkında gizli kalmış özellikleri ortaya çıkarmaya çalışan sorular listesi.
Bilgi Yarışması
Bilgi seviyesini ölçmeye çalışan sorular listesi.
Anket
Karar verme veya düşünceleri toplamaya yardımcı olan oylama.
Hikaye
Görsellerle desteklenmiş şekilli yazılar.
Liste
Bildiğimiz liste.
Sıralı Liste
Sıralı Liste
Caps
Kendi caps'lerinizi oluşturmak için resim yükleyin.
Video
Youtube, Vimeo yada Vine Videoları