Pisagor Bağıntısının İspatı


Sponsorlu Bağlantılar

Bu yazı Pisagor Bağıntısının İspatı hakkında özet bilgiler içerir. İşinize yarayacağınızı düşünüyorum. Tam da not almalık…

Pisagor teoremine göre bir diküçgende dik kenarın yani hipotenüsün bir kenarını oluşturduğu karenin alanı diğer iki dik kenarın birer kenar olarak oluşturdukları karelerin alanları toplamına eşittir.:

c uzunluğu hipotenüstür. a ve b uzunlukları ise dik kenarlardır. Her kenardan birer kare oluşturulur. Bu karelerin alanları, kare alan formülüne dayalı olarak şeklinde sıralanır. Böylece üç karenin köşelerinin birleşiminden oluşan bir dik üçgen oluşturulur. Oluşan üçgenin dik köşesinden hipotenüsün oluşturduğu karenin, hipotenüse paralel olan kenara indirilen dikme ile üçgen içerisinde Öklid bağıntısı kurulur. (öklid bağıntısı benzerlikten ispatlanabilmektedir.) Öklide göre

Sponsorlu Bağlantılar

yani, dik kenarlardan birinin karesi, dik açıdan hipotenüse indirilen dikmenin ayırdığı parçalardan kendisine komşu olan tarafın uzunluğu ile hipotenüsün tamamının çarpımına eşittir. Bu durumda

olacaktır. Yani a kenarına ait karenin alanı, hipotenüse ait alanın dik açıdan indirilen dikmeyle ikiye ayırdığı alanlardan kendisine komşu olan alana eşit olacaktır. Bu durumu diğer kenar için de düşünürüz.

olacaktır. Bunu takiben,

olacaktır.

Matematikte, Pisagor Teoremi, Öklid geometrisinde bir dik üçgenin 3 kenarı için bir bağıntıdır. Bilinen en eski matematiksel teoremlerden biridir. Teorem sonradan İÖ 6. YY’da Yunan filozof ve matematikçi Pisagor’a atfen isimlendirilmiş ise de, Hindu, Yunan, Çinli ve Babilli matematikçiler teoremin unsurlarını, o yaşamadan önce bilmekteydiler.
Pisagor teoreminin bilinen ilk ispatı Öklid’in Elementler eserinde bulunabilir.
Sayısal Örnekler

En yaygın olarak karşılaşılan örneklerden biri "3-4-5" üçgenidir.
Bu, komşu kenarları sırasıyla 3 birim, 4 birim ve karşı kenarı 5 birim olan bir dik üçgeni temsil eder.

Diğer örnekleri ise

Pisagor teoremi bir dik açı oluşturmak kolaydır.

Şöyle ki:

1) Yeterli uzunlukta bir halatı(ya da ipliği) eşit 12 parçaya ayıracak şekilde işaretleyin.

2) Bu işaretlerden 3. ve 5. (3+5) noktalari sabitleyip, ipin açıkta kalan iki ucunu (gergin olacak şekilde) birleştirin.

3) 3. işaretin bulunduğu noktada bir dik açı elde edersiniz.
Bu yöntemin geçmişte tarım alanlarının paylaşılması, arazi sınırlarının belirlenmesi gibi alanlarda kullanıldığı bilinmektedir…

Sponsorlu Bağlantılar

Tepkin Ne Oldu?

Çok Tatlı Çok Tatlı
0
Çok Tatlı
Sesli Güldüm Sesli Güldüm
0
Sesli Güldüm
Rezil Rezil
0
Rezil
Kızgın Kızgın
0
Kızgın
Yok Artık Yok Artık
0
Yok Artık
Başarılı Başarılı
0
Başarılı

Yorum 0

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Pisagor Bağıntısının İspatı

Giriş Yap

Hesabınız yok mu?
Üye Ol

reset password

Geri
Giriş Yap

Üye Ol

Not delilerine katıl!

Geri
Giriş Yap
Tür Seç
Kişilik Testi
Kişilik hakkında gizli kalmış özellikleri ortaya çıkarmaya çalışan sorular listesi.
Bilgi Yarışması
Bilgi seviyesini ölçmeye çalışan sorular listesi.
Anket
Karar verme veya düşünceleri toplamaya yardımcı olan oylama.
Hikaye
Görsellerle desteklenmiş şekilli yazılar.
Liste
Bildiğimiz liste.
Sıralı Liste
Sıralı Liste
Caps
Kendi caps'lerinizi oluşturmak için resim yükleyin.
Video
Youtube, Vimeo yada Vine Videoları